
CSI 11 Computer Science for Everyone

Course Description: This course presents an introduction to computer science (CS) with an emphasis on
problem-solving and computational and algorithmic thinking through “coding”. It aims to present computers
as a tool for modeling and solving real-world problems. It will offer an introduction to programming, and
students will be exposed to more advanced topics selected from the following partial list: artificial
intelligence, robotics, cybersecurity, data science, networking, and neuroscience, conferring an advantage for
students considering a CS major. Students majoring in any other discipline will learn how computers can be
used to help solve problems in one’s area of expertise.

Prerequisites: MTH 5 or CUNY Elementary Algebra Proficiency, and ENG 2 and RDL 2, if required

Course Goals/Objectives:
CSI 11 helps to answer questions like “What computer science is?”, “What is computational thinking?”, and
“How they can be used to help solve problems?” by introducing students to basic principles of computational
thinking.
In this course students will see the basic design of a computer system, how the information is represented
and processed. Students will learn to analyze a given problem, design clear, step-by-step solution to the
problem; translate this solution into a program; then test and debug it. By the end of the course students will
understand the difference between an algorithm and a computer program, and will be able to use, where
appropriate, functions; data structures; file and user input/output; decision structures; and loops.

Course Credits: 4 hours, 3 credits

Student Learning Outcomes (SLO’s):
 Students will be required to gather information from a variety of sources: the textbook, the

internet, and discussion group. Through class discussions students will learn to interpret the
collected data as it pertains to presented topic and will be guided to assess the applicability and
quality of the data being acquired.

 Students will analyze problems, design an algorithmic solution, and implement that solution into
a functioning program via the assigned coding exercises. Throughout the process, students will
need to analyze and critique different proposed solutions to the given problems, and they will
analyze anomalies (“bugs”) in the process of generating correct code.

 Students will be required to design algorithms and write the programs that implement them. A
well written program contains detailed comments to document and justify the choices that
students made in their algorithm. In addition, group projects are structured specifically so that
students state and justify why a chosen algorithm solves the stated problem via a report or an in-
class discussion.

 Students will explore and apply the fundamental concepts in computer science (principles of
coding, information theory, artificial intelligence, robotics, data science, and cybersecurity), via
coding exercises, group projects, and class discussions. Students will gather information,
represent it meaningfully, and use it to solve a posed problem.

 Students will complete weekly group projects in which they will model and solve real-world
problems from a variety of fields. They will analyze them using mathematical and formal
techniques in order to find an algorithmic solution that can be implemented into a program.

 Students will participate in class discussions on topics from cybersecurity and cryptography,
including the impact of digital technologies in issues of privacy, security, and the nature of social
structures.

Grading Policy and Assessment:
Students will be given in-class quizzes or will be asked to submit in-class work (once a week); homework
assignments and group project assignments will be given once a week each. All group projects are
programming assignments with grading rubric provided for each of them and will be submitted as a program
along with the accompanying documentation answering the posed question. All homeworks and group
projects have a due date and must be submitted by the due date. In addition, there will be a Midterm Exam
and a Final Exam.

Grading for the course will be based on:
 In-class work or in-class quizzes: 10%
 Homeworks: 20%
 Group projects: 20%
 Midterm Exam: 25%
 Final Exam: 25%

Attendance Policy: Attendance in class is essential to success in this course. If a student misses a class, it is
the student’s responsibility to get the material covered in class and all the assignments. There are no make-
ups for in-class work nor for in-class quizzes. A student may receive a failing grade for the course if absent
more than 6 times (6 times are equivalent to 12 hours).

Textbook/Resources:
1) How to think like a computer scientist (Python 3) (free online textbook)
http://interactivepython.org/runestone/static/thinkcspy/index.html

2) ZyBooks: Computer Science for Everyone (online book) https://learn.zybooks.com/

Week Topic Reading

1 History and Basics ZyBooks: Computer Science for Everyone
Chapter 1 History and Basics
1.1 Brief history
1.2 Historical figures in computing
1.3 Computer programs
1.4 Computers all around us
1.5 Representing information as bits
1.6 Naming numerous bits
1.7 Computing and careers

Hardware and Software ZyBooks: Computer Science for Everyone
Chapter 2 Hardware and Software
2.1 Basic hardware
2.2 Cache, memory, drive
2.3 Types of computers
2.4 Common input devices
2.5 Common output devices
2.6 Moore's Law
2.7 Hardware trends
2.8 Programming: Machine language
2.9 Programming: Assembly language
2.10 Programming: High-level language

http://interactivepython.org/runestone/static/thinkcspy/index.html
https://learn.zybooks.com/

Basic Input and Output ZyBooks: Computer Science for Everyone
Chapter 3 Introduction to Python 3
3.1 Programming introduction
3.2 Computational thinking
3.3 The Python interactive interpreter
3.4 Programming in Python
3.5 Basic output
3.6 Basic input
3.7 Errors
3.8 Additional practice: Output art
3.9 Development environment

2 Operating Systems ZyBooks: Computer Science for Everyone
Chapter 4 Operating Systems
4.1 OS basics
4.2 Common operating systems

Variables and Expressions in Python ZyBooks: Computer Science for Everyone
Chapter 5 Variables and Expressions
5.1 Objects and variables
5.2 Assignments
5.3 More on objects
5.4 Names
5.5 Numeric types: Floating-point
5.6 Expressions
5.7 Module basics
5.8 Math module
5.9 Additional practice: Number games
5.10 Representing text

3 Types ZyBooks: Computer Science for Everyone
Chapter 6 Types
6.1 String basics
6.2 Lists basics
6.3 Dictionary basics
6.4 Common data types summary
6.5 Additional practice: Grade calculation
6.6 Type conversions
6.7 String formatting
6.8 Numbers in binary
6.9 Additional practice: Health data

4 The Internet and Web ZyBooks: Computer Science for Everyone
Chapter 7 The Internet and Web
7.1 Internet basics
7.2 IP addresses
7.3 Home networking
7.4 Cellular networks
7.5 Web basics
7.6 Web search engines
7.7 Web search tips
7.8 Domain names and URLs
7.9 HTML

7.10 CSS

5 Branching ZyBooks: Computer Science for Everyone
Chapter 8 Branching
8.1 If-else statement
8.2 Relational and equality operators
8.3 Multiple if-else
8.4 Boolean operators and expressions

Book: How To Think Like a Computer Scientist
7.1. Boolean Values and Boolean Expressions
7.2. Logical operators
7.3. Precedence of Operators
7.4. Conditional Execution: Binary Selection
7.5. Omitting the else Clause: Unary Selection
7.6. Nested conditionals
7.7. Chained conditionals
7.8. Boolean Functions

ZyBooks: Computer Science for Everyone
Chapter 9 Branching
8.5 Membership operators
8.6 Code blocks and indentation
8.7 Conditional expressions
8.8 Additional practice: Tweet decoderet decoder

6 Loops ZyBooks: Computer Science for Everyone
Chapter 9 Loops
9.1 Loops
9.2 While loops
9.3 More while examples
9.4 Counting
9.5 For loops
9.6 Counting using the range() function
9.7 While vs. for loops
9.8 Nested loops
9.9 Developing programs incrementally
9.10 Break and continue
9.11 Loop else
9.12 Getting both index and value when looping:
enumerate()
9.13 Additional practice: Dice statistics

7 Strings ZyBooks: Computer Science for Everyone
Chapter 10 Strings
10.1 String slicing
10.2 Advanced string formatting
10.3 String methods
10.4 Splitting and joining strings
10.5 The string format method

Lists and Dictionaries ZyBooks: Computer Science for Everyone
Chapter 11 Lists and Dictionaries

11.1 Lists
11.2 List methods
11.3 Iterating over a list
11.4 List games
11.5 List nesting
11.6 List slicing
11.7 Loops modifying lists
11.8 Sorting lists
11.9 Command-line arguments
11.10 Additional practice: Engineering examples
11.11 Dictionaries
11.12 Dictionary methods
11.13 Iterating over a dictionary

8 Midterm Exam

Review and the Midterm Exam

9 Privacy ZyBooks: Computer Science for Everyone
Chapter 12 Privacy
12.1 Users leave footprints
12.2 Users aren’t anonymous
12.3 Information is valuable
12.4 Someone could listen
12.5 Sharing releases control
12.6 Search is improving
12.7 Online is reald

Functions ZyBooks: Computer Science for Everyone
Chapter 13 Functions
13.1 User-defined function basics
13.2 Function parameters
13.3 Returning values from functions
13.4 Dynamic typing
13.5 Reasons for defining functions

10
Security ZyBooks: Computer Science for Everyone

Chapter 14 Functions
14.1 Security basics
14.2 Viruses and malware
14.3 Account security
14.4 Internet scams and spam
14.5 Cryptography
14.6 Denial of service (DoS) attacks

Functions ZyBooks: Computer Science for Everyone
Chapter 13 Functions
13.6 Function with branches/loops
13.7 Function stubs
13.8 Functions are objects
13.9 Functions: Common errors
13.10 Scope of variables and functions

11 Functions 13.11 Namespaces and scope resolution
13.12 Function arguments
13.13 Keyword arguments and default parameter
values
13.14 Arbitrary argument lists
13.15 Multiple function outputs
13.16 Help! Using docstrings to document functions
13.17 Engineering examples

12 Plotting ZyBooks: Computer Science for Everyone
Chapter 15 Plotting
14.1 Introduction to plotting and visualizing data
14.2 Styling plots
14.3 Text and annotations
14.4 Numpy
14.5 Multiple plots

Files ZyBooks: Computer Science for Everyone
Chapter 16 Files
16.1 Reading files
16.2 Writing files

14 Modules ZyBooks: Computer Science for Everyone
Chapter 17 Modules
17.1 Modules
17.2 Finding modules
17.3 Importing specific names from a module
17.4 Executing modules as scripts
17.5 Reloading modules
17.6 Packages
17.7 Standard library

