
BRONX COMMUNITY COLLEGE
of City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SYLLABUS: CSI32 Introduction to Computer Programming II 3 credits / 4 hours

PREREQUISITE: CSI31 or departmental permission, ENG02, RDL02 if required
TEXT: Object-Oriented Programming in Python, by Goldwasser and Letscher,

 Pearson/Prentice Hall, 1st Edition, 2008
Please note that the book is out of print, however you can download it from here:
http://cs.slu.edu/~goldwasser/oopp/
Software: Python 3.4 or later; DIA v0.97 (recommended structured diagram software)

Content:
In this class we will study basics of object-oriented design (OOD) and object-oriented programming (OOP)
using the Python language. Learn to use Unified Modeling Language (UML) diagrams (class, sequence,
activity and state diagrams) as a design tool. Discuss modules, types, classes, inheritance, methods,
constructors, and recursion.

Objectives:
1. To deepen the student's understanding of Python as an OO language to a level where other OO

languages such as C++ or Java can be easily assimilated.
2. To regard every variable as an object of some class, and to review the built-in types from this

perspective.
3. To provide the student with opportunities to use OOD/OOP to design correctly and to implement a

programming project.

Students will complete 8 to 10 small programming assignments selected from the list of suggested exercises
or comparable assignments developed by the instructor, and one big (final) project.

Attendance Policy :

• Students who miss more than 5 classes, without a genuine and documented reason will be assigned
an academic grade of F.

• Students who come to the class late by 20 minutes or more for the first time should consider
themselves as warned. Continuous or habitual late-coming or early departure will be considered as
absence.

Section(s) Homework Assignment(s)

Lecture 1
Data and Types
Operations, Functions, and Algorithms
Conditional Statements (review)

1.1,
1.2,
4.4

Lecture 2
For loops (review),
Case Studies: DNA to RNA,
While loops (review), Flowcharts, Dia editor

4.1,
4.2,
5.1

Lecture 3
Object-Oriented Paradigm, 1.4

UML (activity diagram, class diagram, sequence
diagram)

Lecture 4
Good Software Practices
Using objects: the list class,
Other Sequence Classes: str and tuple,
Numeric Types: int, long, and float,
Type Conversions

Chapter 7
2.2,
2.3,
2.4,
2.5

Lecture 5
Exercise 2.37: DNA mutation
List comprehension
Calling Functions, Python Modules,
Expressions

p. 87, exercise 2.37
4.5,
2.6, 2.7,
2.8

Lecture 6
Functions (review),
Case Study: Computing the Square Root
Error Checking and Exceptions

5.2,
5.4,
5.5

Lecture 7
The Canvas,
Drawable Objects

3.1,
3.2

Lecture 8
Rotating, Scaling, and Flipping;
Cloning (optional)

3.3,
3.4

Lecture 9
A Fraction Class 6.4

Lecture 10
Set Class
BinaryNumber Class

p. 234, exercise 6.15
p. 235, exercise 6.18

Lecture 11
Game design and implementation Chapter 7

Lecture 12
Inheritance: Augmentation, Specialization,
When Should Inheritance (Not) Be Used

9.1, 9.2,
9.3

Lecture 13
Class Hierarchies and cs1graphics 9.4

Midterm Examination (10/19)

Lecture 14
Basics of Event-Driven Programming
Event Handling in out Graphics Module

15.1,
15.2

Lecture 15
The Event Class
Programming Using Events

15.3,
15.4

Lecture 16
Standard Input and Output,
Formatted Strings,
Working with Files,
Handling Newline Characters,
Case Studies

8.1,
8.2,
8.3,
8.4,
8.5

Lecture 17
A Bullseye Class
Case Study: Drawing a Pyramid

11.1,
4.3

Lecture 18
Functional Recursion
Binary Search

11.3,
11.4

Lecture 19
Two Familiar Containers: list and tuple
Dictionaries
Containers of containers
Arrays

12.1,
12.2,
12.3,
12.5

Lecture 20
A Network Primer
Writing a Basic Client

16.1,
16.2

Lecture 21
Basic Network Servers
Case Study: Network Chat Room

16.3,
16.4

Lecture 22
Peer-to-Peer: Instant Messenger 16.5

Fall 2016 / NN

