Chapter 6: Recursion

1. Recursive Definitions
2. Simple Recursive Examples
3. In-Class Work
A Function Can Call Itself

- A recursive definition of a function is one which makes a function call to the function being defined.
- The function call is then a recursive function call.
- A definition is circular if it leads to an infinite sequence of function calls.
- To prevent this:
 - the function must call itself with a parameter smaller than the one it is using.
 - the function must test for when the parameter has reached the minimum size (the base case(s)): this must be handled without a recursive call.
Recursive Definitions

The Call Stack

The function call stack can handle recursive functions easily. There is no reason why a function can’t push an activation record onto the call stack with variables for the current function while calling that same function. The earlier version of that function will resume when the recursive call is completed.

When the base case is finally met, there will be no further recursive calls, and no further activation records will be pushed onto the stack.

Without a base case, the stack would overflow, producing a run-time error.
Recursive Definitions

Chapter 6: Recursion

Simple Recursive Examples

In-Class Work

Recursive Definitions

The Factorial Function

\[n! = \begin{cases}
1 & \text{if } n = 0 \\
n(n - 1)! & \text{otherwise}
\end{cases} \]

The Factorial Function - using Python

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```
The Factorial Function - using Python

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

See `fact.py`
String Reversal

Circular Definition

```python
def reverse(s):
    return reverse(s[1:]) + s[0]
```
String Reversal

Circular Definition

```python
def reverse(s):
    return reverse(s[1:]) + s[0]
```

reverse('abc') → reverse('bc') + 'a'
 → reverse('c') + 'b'
 → reverse('') + 'c'
 → reverse('') + ''
 ...
Definition with Base Case

```python
def reverse(s):
    if s == "":
        return s
    else:
        return reverse(s[1:]) + s[0]
```

See `reverse.py`
An anagram of a word is another word spelled using the same letters but rearranged. Rearrangements are also called permutations. For example: TORSO is an anagram for ROOST.

A recursive strategy to produce all anagrams of a given word is:

- remove the first letter from the word.
- for all anagrams of the smaller word, insert it in all possible positions.

How many permutations of the letters in TORSO is there?
An anagram of a word is another word spelled using the same letters but rearranged. Rearrangements are also called permutations. For example: TORSO is an anagram for ROOST.

A recursive strategy to produce all anagrams of a given word is:

- remove the first letter from the word.
- for all anagrams of the smaller word, insert it in all possible positions.

How many permutations of the letters in TORSO is there?

5! = 120
Chapter 6: Recursion

Recursive Definitions
Simple Recursive Examples
In-Class Work

Anagrams

Anagrams Using Recursion

```python
def anagrams(s):
    if s == "":
        return [s]
    else:
        ans = []
        for w in anagrams(s[1:]):
            for pos in range(len(w)+1):
                ans.append(w[:pos]+s[0]+w[pos:1])
        return ans

See anagrams.py
```
Fast Exponentiation

Naive Iteration is \(\Theta(n)\)

```python
# power.py
def loopPower(a, n):
    ans = 1
    for i in range(n):
        ans = ans * a
    return ans
```
DIVIDE AND CONQUER RECURSION IS $\Theta(\log n)$

```python
# power.py
def recPower(a, n):
    if n == 0:
        return 1
    else:
        factor = recPower(a, n // 2)
        if n % 2 == 0:
            return factor * factor
        else:
            return factor * factor * a
```
power.py

def recPower(a, n):
 if n == 0:
 return 1
 else:
 factor = recPower(a, n // 2)
 if n % 2 == 0:
 return factor * factor
 else:
 return factor * factor * a
Let’s compare the number of multiplications performed while using recursive definition of power function and naive definition of power function:

naive (running time $\Theta(n)$): 4 multiplications
recursive (running time $\Theta(\log n)$): 5 multiplications

If we try 2^{10}, then
naive: 9 multiplications
recursive: 6 multiplications
Binary Search

Iteration

```python
def search(items, target):
    low = 0
    high = len(items) - 1
    while low <= high:
        mid = (low + high) // 2
        item = nums[mid]
        if target == item:
            return mid
        elif target < item:
            high = mid - 1
        else:
            low = mid + 1
    return -1
```
Binary Search

Algorithm: binary search

-- search for x in nums[low]...nums[high]

if low > high
 x is not in nums
mid = (low + high) // 2
if x == nums[mid]:
 x is at mid position
elif x < nums[mid]
 binary search for x in nums[low]...nums[mid-1]
else
 binary search for x in nums[mid+1]...nums[high]
Chapter 6: Recursion

Simple Recursive Examples

In-Class Work

Binary Search

Python Code Using Recursion

def search(items, target):
 return recBinSearch(target, items, 0, len(items)-1)
def recBinSearch(x, nums, low, high):
 if low > high:
 return -1
 mid = (low + high) // 2
 item = nums[mid]
 if x == item:
 return mid
 elsif x < item:
 return recBinSearch(x, nums, low, mid-1)
 else:
 return recBinSearch(x, nums, mid+1, high)
Show pictorial representation of the call \texttt{recPower}(3,7).

Figure out exactly how many multiplications does \texttt{recPower}(3,7) do.

Write and test a recursive function \texttt{Maximum} to find the largest number in a list.

\textit{Hint}: the maximum is the larger of the first item and maximum of all the other items.