Chapter 6: Recursion

Analyzing Recursion
Sorting
The Tower of Hanoi
Divide-and-conquer Approach
In-class Work
Any iterative algorithm can be transformed into a recursive one.

Different strategies lead to different running times. (The recursive power example is more efficient than the naive loop version.)

To measure efficiency, you must count **recursive calls** and the depth of the call stack.

You must also consider the **size of the data parameters** that are passed in recursive calls.
The Fibonacci Sequence

The Fibonacci Sequence is obtained by beginning with the pair of numbers 1, 1 and continuing indefinitely by adding the last two numbers to give the next number in the sequence, giving 1, 1, 2, 3, 5, 8, 13 and so on.
The Fibonacci Sequence

The nth Fibonacci Number: Loop Version

```python
def loopFib(n):
    curr = 1
    prev = 1
    for i in range(n - 2):
        curr, prev = curr + prev, curr
    return curr
```

Analysis

To calculate $\text{fib}(n)$ requires $n - 2$ iterations of the for loop, so the running time is $\Theta(n)$.
Chapter 6: Recursion

The Fibonacci Sequence

The nth Fibonacci Number: Recursive Version

```python
def recFib(n):
    if n < 3:
        return 1
    else:
        return recFib(n - 1) + recFib(n - 2)
```
THE FIBONACCI SEQUENCE

ANALYSIS

```
fib(2)  fib(1)
   /      /
fib(3)  fib(2)  fib(2)  fib(1)
      /       /       /       /
fib(4) fib(3) fib(3) fib(2)
   /       /       /       /
fib(5) fib(4) fib(1) fib(1)
    /     /     /     /
fib(6)
```

Chapter 6: Recursion
Analyzing Recursion
Sorting
The Tower of Hanoi
Divide-and-conquer Approach
In-class Work
The Fibonacci Sequence

Analysis

To calculate $\text{fib}(6)$ is very wasteful:

- $\text{fib}(4)$ is calculated 2 times
- $\text{fib}(3)$ is calculated 3 times
- $\text{fib}(2)$ is calculated 5 times
- $\text{fib}(1)$ is calculated 8 times

To calculate $\text{fib}(n)$ requires $\text{fib}(n) - 1$ steps, so the running time is $\Theta(\text{fib}(n))$, which is $\Theta(2^n)$, or exponential in n.
The Fibonacci Sequence

The nth Fibonacci Number: Improved Recursive Version

```python
def newFib(n):
    return newFib2(1, 1, 0, n)

def newFib2(curr, prev, i, n):
    if i == n - 2:
        return curr
    else:
        return newFib2(curr + prev, curr, i + 1, n)
```

You can see that this definition won’t work if a user wants to get the first Fibonacci number, i.e. 1, but it works perfectly well for all other cases. Can it be fixed? (class work)
The Fibonacci Sequence

newFib(6)

newFib2(1,1,0,6)

newFib2(2,1,1,6)

newFib2(3,2,2,6)

newFib2(5,3,3,6)

newFib2(8,5,4,6)
To calculate $\text{fib}(n)$ now requires $n - 2$ recursive calls, so the running time is $\Theta(n)$, which is a big improvement.
The Fibonacci Sequence

How To Make An Iterative Function Recursive

- Write a function that calls a helper function with parameters for all local variables and parameters from the loop version.
- Pass the initial values from the loop version in this function call.
- The helper function will be recursive:
 - The base case will be the negation of the loop condition.
 - The recursive call will change the parameters to match one iteration of the loop version.
Recall Selection Sort you were asked to program in one of the hws:

```python
def SelectionSort(lst):
    n = len(lst)
    for i in range(n-1):
        pos = i
        for j in range(i+1, n):
            if lst[j] < lst[pos]:
                pos = j
        lst[i], lst[pos] = lst[pos], lst[i]
```
Selection Sort

Selection Sort Analysis

- Inner loop runs \(n \) times
- First time it compares \(n \) items, then \(n - 1 \), etc.
- Total comparisons = \(n + (n - 1) + (n - 2) + \ldots + 1 = \frac{n(n+1)}{2} \)
- Running time is \(\Theta(n^2) \)
Now, let’s take a look at a recursive sorting algorithm:

Algorithm: `mergeSort nums`

1. split `nums` into two halves (`nums1`, `nums2`)
2. sort `nums1` (the first half)
3. sort `nums2` (the second half)
4. merge `nums1` and `nums2` back into `nums`
Recursive Design: Mergesort

Merge Pseudocode

Algorithm: merge sorted lists (nums1 and nums2) into nums:

```plaintext
while both nums1 and nums2 have more items:
  if top of nums1 is smaller:
    copy it into current spot in nums
  else (top of nums2 is smaller):
    copy it into current spot in nums
copy remaining items from nums1 or nums2 to nums
```

See the definition of the `merge` function in `mergeSort.py`.
Recursive Design: Mergesort

Recursive mergesort - with the base case

if len(nums) > 1:
 split nums into two halves (nums1, nums2)
 mergeSort nums1 (the first half)
 mergeSort nums2 (the second half)
 merge nums1 and nums2 back into nums

See the definition of the mergeSort function in mergeSort.py.
Analyzing Mergesort

Running Time of merge
- Each item gets moved exactly once back into nums
- Running time is $\Theta(n)$, where n is the size of nums

Merge Pseudocode

```python
Algorithm: merge sorted lists (nums1 and nums2) into nums:
  while both nums1 and nums2 have more items:
    if top of nums1 is smaller:
      copy it into current spot in nums
    else (top of nums2 is smaller):
      copy it into current spot in nums
  copy remaining items from nums1 or nums2 to nums
```
Analyzing Mergesort

Running Time of mergeSort

- The call stack gets as deep as $\log_2(n)$, where n is the size of nums.
- At each stage, mergeSort is called twice, but for each call, the argument list is half the size as before.
- For $\log_2(n)$ stages, each of the n items is moved once per stage.
- The running time is the product, which is $\Theta(n \log n)$.

Recursive mergeSort - with the base case

if len(nums) > 1:
 split nums into two halves (nums1, nums2)
 mergeSort nums1 (the first half)
 mergeSort nums2 (the second half)
 merge nums1 and nums2 back into nums
Chapter 6: Recursion

Analyzing Recursion

Sorting

The Tower of Hanoi

Divide-and-conquer Approach

In-class Work

Analyzing Mergesort

Running Time of mergeSort

<table>
<thead>
<tr>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

n Items

log (n) Stages

MergeSort

MergeSort

5
2
8
1
6
4
3
7
5
MergeSort

Merge

Split

Merge

Split

MergeSort

MergeSort

Split

Split

MergeSort

MergeSort

Merge

n Items

log (n) Stages

CSI33 Data Structures
Tower of Hanoi or Tower of Brahma is a puzzle generally attributed to the French mathematician Édouard Lucas, who published an article about it in 1883.

Read the legend surrounding the puzzle on page 207 in the book.
The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules:

- Only one disk can be moved at a time.
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack.
- No disk may be placed on top of a smaller disk.

With three disks, the puzzle can be solved in seven moves. The minimum number of moves required to solve a Tower of Hanoi puzzle is $2^n - 1$, where n is the number of disks.
Tower of Hanoi rules

3-disks Tower of Hanoi with solution:

Recursive Solution

Algorithm: move n-disk tower from source to destination.

move \(n - 1 \) disk tower from source to resting place
move 1 disk tower from source to destination
move \(n - 1 \) disk from resting place to destination
Divide and conquer is derived from the Latin saying *Divide et impera*.

In computer science, divide and conquer is an important algorithm design paradigm based on multi-branched recursion.

A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same (or related) type, until these become simple enough to be solved directly.

The solutions to the sub-problems are then combined to give a solution to the original problem.
The following algorithms from the ones we covered so far employ this paradigm:

Binary Search (both versions) and Merge sort.
In-class Work

- Fix the `newFib` function to make it work when `newFib(1)` is called.
- Use Merge Sort to sort the following numbers: 5, 1, 6, 2, 8, 3, 9
 Show the graphical representation of the sort (use lecture slides)
- solve the Tower of Hanoi puzzle for four discs.