Chapter 13: Heaps, Balances Trees and Hash Tables

1. Priority Queues and Heaps (continues)
2. Hash Tables
3. In-class Work / Suggested homework
Binary Heaps

Binary Heap

- is a complete binary tree, whose nodes are labeled with integer values (priorities), that

 - has the Heap property:

 For any node, no node below it has a higher priority.

- Therefore, the highest priority node is at the top of the heap!

- insert method for the Heap class to insert elements, and

- delete_max method to delete the top of the heap.
Binary Heaps

A tree with the heap property

```
  9
 /   \
8     8
|     |
6 7 1 3
| |
2 5 0
```
Binary Heaps

A tree without the heap property:

```
         9
        /\  \
       6   8
      /\   /\  \
     4   7 1   3
   /\   /\     /\  \
  2   5 0     1   3
```
Implementation:

- Theenqueue and dequeue methods are implemented so they preserve the heap property.

- To save space, the complete binary tree is implemented as an array.
 The root is at index 1.
 The children of the node at index i are at indexes 2 * i and 2 * i + 1.

- In Python: list class is used to implement binary heaps, so resizing will not be a problem when items are enqueued.

- in C++: dinamic arrays are used, and the class is defined as template class.
Heaps are represented by arrays, with the root at index 1.
def __init_(self, items=None):
 '''post: a heap is created with specified items'''
 self.heap = [None]
 if items is None:
 self.heap_size = 0
 else:
 self.heap += items
 self.heap_size = len(items)
 self._build_heap()
Heap: class declaration in C++:

```cpp
template <typename Item>
class Heap{
public:
    Heap(const Item seq[] = NULL, const int &size = 0);
    ~Heap();
    unsigned int size() const { return heap_size; }
    void asList(std::string &s);

private:
    Heap(const Heap<Item> &h);
    Heap<Item>& operator=(const Heap<Item> &h);
    void _build_heap();
    void resize(unsigned int newSize);
    Item *items_;
    unsigned int heap_size, capacity_; }

#include "Heap.template"
```
Chapter 13: Heaps, Balanced Trees and Hash Tables

Heaps: operations delete_max and heapify

Removing the highest priority item

Diagram of a heap with numbers:
- 9 (root)
- 8
- 7
- 6
- 5
- 4
- 3
- 2
- 0
Heaps: operations **delete_max** and **heapify**

Save top item and replace with last

```
8
/   \
7    6
/ \
2 0
```

```
5
/   \
1    3
```

```
4
```

```
2 0
7 6
8
1 3
5
4
```
HEAPS: OPERATIONS **DELETE_MAX AND _HEAPIFY**

PERCOLATE DOWN UNTIL...

```
     8
   /   \
 4     5
 /   \  /   \
7     6 1     3
 /   \   /   \  /   \
2     0 6     1 3
```

Heaps: operations include **delete_max** and **heapify**.
Heaps: Operations

DELETE_MAX AND _HEAPIFY

The heap property is restored

```
2 0
6 1 3
5
8
7
4
8
7
4
6
5
1
3
2
0
```

2
0
6
1
3
5
8
7
4
8
7
4
6
5
1
3
2
0
def delete_max(self):
 '''pre: heap property is satisfied, self.heap is the list of items with top element at index 1.
 post: maximum element in heap is removed and returned'''

 if self.heap_size > 0:
 max_item = self.heap[1]
 self.heap[1] = self.heap[self.heap_size]
 self.heap_size -= 1
 self.heap.pop()
 if self.heap_size > 0:
 self._heapify(1) # brings the swapped element into the appropriate position
 return max_item
HEAPS: OPERATION delete_max IN C++

```cpp
template <typename Item>
Item Heap<Item>::delete_max()
{
    Item max_item;
    if (heap_size > 0) {
        max_item = items_[1];
        items_[1] = items_[heap_size];
        heap_size -= 1;
        if (heap_size > 0) {
            _heapify_(1);
        }
    }
    return max_item;
}
```
Heaps: operation **Heapify** in Python

Heapify

heapify starts at the node and moves its value down the tree by swapping it with the higher priority child.
def _heapify(self, position):
 '''pre: heap property is satisfied below position
 post: heap property is satisfied at and below position'''
 item = self.heap[position]
 while position * 2 <= self.heap_size:
 child = position * 2
 # if right child exists, determine maximum of two children
 if (child != self.heap_size and
 self.heap[child+1] > self.heap[child]):
 child += 1
 if self.heap[child] > item:
 self.heap[position] = self.heap[child]
 position = child
 else: break
 self.heap[position] = item
Heaps: operation Heapify in Python

```cpp
template <typename Item>
void Heap<Item>::heapify_(unsigned int position) {
    Item it;
    unsigned int child;
    it = items_[position];
    while (position * 2 <= heap_size) // if left child exists
    {
        child = position * 2; // left child
        if (child != heap_size && items_[child + 1] > items_[child]) { child += 1; }
        if (items_[child] > it) {
            items_[position] = items_[child];
            position = child; } //advance the position
        else { break; }
        items_[position] = it;
    }
}
```
Heap: Operation Insert

Want to insert item with priority 8

Diagram:

```
    9
   / \
  7   5
 / \ / \ \
6   4 1 3
|   |   |
2 0 1 3
```
Heap: operation \textbf{INSERT}

Add the new item at the end

```
2 0
6 4
7
9
1 3
5
8
```
Heap: Operation Insert

Percolate up until...

```plaintext
2 0
6
7
9
1 3
5
8
4
```
Heap: operation insertion

The heap property is restored.
def insert(self, item):
 '''pre: heap property is satisfied
 post: item is inserted in proper location in heap'''
 self.heap_size += 1
 self.heap.append(None) # extend the length of the list
 position = self.heap_size
 parent = position // 2
 while parent > 0 and self.heap[parent] < item:
 # move the parent’s item down
 self.heap[position] = self.heap[parent]
 position = parent
 parent = position // 2
 self.heap[position] = item # put new item in correct spot
HEAP: OPERATION INSERT

```cpp
template <typename Item>
void Heap<Item>::insert(Item a) {
    if(heap_size + 1 > capacity-1) {
        resize(2*heap_size+1); }
    heap_size += 1;
    int position = heap_size, parent = position / 2;
    while (parent > 0 && items_[parent] < a){
        items_[position] = items_[parent];
        position = parent;
        parent = position / 2; } 
    items_[position] = a; }
```
def _build_heap(self):
 '''pre: self.heap has values in 1 to self.heap_size
 post: heap property is satisfied for entire heap'''

 # 1 through self.heap_size
 for i in range(self.heap_size // 2, 0, -1): # stops at 1
 self._heapify(i)

template <typename Item>
void Heap<Item>::_build_heap() {
 for (unsigned int i = heap_size / 2; i > 0; i--) {
 heapify(i);
 }
The tree is complete, hence it’s height is $\lg n$.

The **insert** and **delete_max** operations are $\Theta(\lg n)$.

Hence, if we use binary heap to implement the priority queue, the **enqueue** and **dequeue** operations will be $\Theta(\lg n)$.
HEAPSORT

We can use the _heapify and delete_max methods to sort items in $\Theta(n \times \log n)$.

The heap size decreases each time an item is removed, let's use this space. We delete the max element from the heap, place it at the last spot in the heap before the item was removed. After we have removed all the items except one, the resulting array is sorted.
```python
def heapsort(self):
    '''pre: heap property is satisfied
    post: items are sorted'''
    sorted_size = self.heap_size
    for i in range(0, sorted_size - 1):
        # Since delete_max calls pop to remove an item,
        # append dummy value to avoid an illegal index.
        self.heap.append(None)
        item = self.delete_max()
        self.heap[sorted_size - i] = item
```
Running times:

- **insert** is $\Theta(\log n)$.
- **delete_max** is $\Theta(\log n)$.
- **_heapify** is $\Theta(\log n)$.
- **_build_heap** is $\Theta(n)$.
- **heapsort** is $\Theta(n \log n)$.
Use the `Heap` class as defined in this chapter.

The `enqueue` method is called the `insert` method for the `Heap` class.

The `dequeue` method is called the `delete_max` method for the `Heap` class.

Define `Node` class, with two attributes: `priority`, `item`;
To compare two `Node` instances, `Node1 < Node2`, compare their priorities, i.e. `priority1 < priority2`
Using C++

- Write the Node class as a C++ template class with private priority and item data members.

- Overload < and other comparison operators to compare priorities.

- Alternative: use the Priority Queue template class from the Standard Template Library.
Various names are given to the abstract data type we know as a dictionary in Python:

- **Hash** (The languages Perl and Ruby use this terminology; implementation is a hash table).
- **Map** (Microsoft Foundation Classes C/C++ Library; because it maps keys to values).
- **Dictionary** (Python, Smalltalk; lets you ”look up” a value for a key).
- **Association List** (LISP—everything in LISP is a list, but this type is implemented by hash table).
- **Associative Array** (This is the technical name for such a structure because it looks like an array whose ’indexes’ in square brackets are key values).
In Python, a dictionary associates a value (item of data) with a unique key (to identify and access the data).

The implementation strategy is the same in any language that uses associative arrays.

Representing the relation between key and value is a hash table.
The Python implementation uses a hash table since it has the most efficient performance for insertion, deletion, and lookup operations.

The running times of all these operations are better than any we have seen so far. For a hash table, these are all $\Theta(1)$, taking a constant time to run. (If the table gets larger, the running times do not increase.)

This is done by calculating the address of any item, stored in an array, from its key value. The function used to calculate this address is called a hash function.
In C++, maps are *associative containers* that store elements formed by a combination of a *key value* and a *mapped value*, following a specific order.

Internally, the elements in a *map* are always sorted by its *key*.

Maps are typically implemented as *binary search trees*, and as such, are slower than *unordered_map* containers.

Internally, the elements in the *unordered_map* are not sorted in any particular order with respect to either their *key* or *mapped values*, but organized into buckets depending on their *hash values* to allow for fast access to individual elements directly by their key values (with a constant average time complexity on average).
Hash Tables

For keys which are already numeric (integers), they can be divided by the size of the array. The remainder becomes the index into the fixed array.

Text keys must be transformed into integers. For example: the characters’ ASCII codes can be added together, then divided and the remainder is taken.

Functions like this scatter the items through the array. If the function spreads the items ’randomly’ over the array, there are few problems until the array starts to fill up (when the load factor—the filled fraction of the array—becomes one-half or greater).

A collision is when a key having some value gets transformed into the same address as an existing key. Where can the value for the new key go, so it can be found later?
There are different strategies for resolving collisions.

- Open addressing–Linear Probe
- Open addressing–Quadratic Probe
- Double Hashing
- Separate Chaining
Collision Resolution

Open Addressing—Linear Probe

- If a hash function produces a slot address that is already in use, a linear function is used to calculate an alternate location for the new key’s data. This is repeated until a free slot is found.

- When the new key is used to access the data, the original address is inspected. If the data is not found, the linear function is used to calculate the next likely location for the data. This is repeated until the data is found.

- This policy can lead to a high collision rate as items cluster around a few locations.
Collision Resolution

Open Addressing—Quadratic Probe

- If a hash function produces a slot address that is already in use, a quadratic function is used to calculate an alternate location for the new key’s data. This is repeated until a free slot is found.

- When the new key is used to access the data, the original address is inspected. If the data is not found, the quadratic function is used to calculate the next likely location for the data. This is repeated until the data is found.

- This policy can lead to fewer collisions than a linear probe policy.
Collision Resolution

Double Hashing

- If a hash function produces a slot address that is already in use, an alternate hashing function is used to calculate an alternate location for the new key’s data. This is repeated until a free slot is found.

- When the new key is used to access the data, the original address is inspected. If the data is not found, the alternate hashing function is used to calculate the next likely location for the data. This is repeated until the data is found.

- This policy can lead to fewer collisions than a quadratic probe policy.
Collision Resolution

Separate Chaining

- If a hash function produces a slot address that is already in use, a linked list is begun at that slot which contains all the data for colliding keys at that slot. Subsequent keys that hash to that same slot are appended to the linked list.

- When the new key is used to access the data, the original address is inspected. If there is a linked list at that slot, the list is searched for that key’s data.

- This policy still leads to $\Theta(1)$ performance as long as the load factor for the table is not too high.
In-class Work / suggested homework

1. Implement *heapsort* in C++ version of Heap class.

2. Implement the Priority Queue using Binary Heaps in Python and/or in C++ using templates.
 use the `PQueue_ideas.py` and `usingPQueue.py` files.

3. Do the problem 4, from Part II from the Final Exam Sample.