Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w’s distance > (v’s distance + weight(v, w)):
 set w’s parent to v
 set w’s distance to v’s dist. + weight(v, w)

priority queue: S, A, B, C, D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>infty</td>
<td>infty</td>
<td>infty</td>
<td>infty</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
- Set all vertices to have parent None.
- Set distance for all vertices to infinity.
- Set distance for source vertex to 0.
- Insert all vertices into a priority queue (by distance, smallest first).

While priority queue is not empty:
- Dequeue a vertex \(v \) with the shortest distance.
- For each vertex \(w \) adjacent to \(v \):
 - If \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \)):
 - Set \(w \)'s parent to \(v \).
 - Set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \)).

Dequeued: S
Adjacent to S:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>infy</td>
<td>infy</td>
<td>infy</td>
<td>infy</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

dequeued: S
adjacent to S: A, B, C, D

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
 & S & A & B & C & D \\
\hline
\text{parent} & \text{None} & \text{None} & \text{None} & \text{None} & \text{None} \\
\text{dist.} & 0 & \text{infty} & \text{infty} & \text{infty} & \text{infty} \\
\hline
\end{array}
\]
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \)):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

dequeued: S
adjacent to S: A, B, C, D
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v,w \)):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v,w \))

dequeued: S
adjacent to S: A, B, C, D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>infty</td>
<td>infty</td>
<td>infty</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
- set all vertices to have parent None.
- set distance for all vertices to infinity
- set distance for source vertex to 0
- insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
- dequeue a vertex \(v \) with the shortest distance
- for each vertex \(w \) adjacent to \(v \):
 - if \(w \)'s distance > (\(v \)'s distance + weight(\(v,w \))):
 - set \(w \)'s parent to \(v \)
 - set \(w \)'s distance to \(v \)'s dist. + weight(\(v,w \))

dequeued: S
adjacent to S: A,B,C,D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>infty</td>
<td>infty</td>
<td>infty</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

dequeued: \(S \)
adjacent to \(S \): \(A,B,C,D \)

<table>
<thead>
<tr>
<th></th>
<th>(S)</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>(S)</td>
<td>(S)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>infty</td>
<td>infty</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

dequeued: S
adjacent to S: A, B, C, D

<table>
<thead>
<tr>
<th>parent</th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>S</td>
<td>S</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>infty</td>
<td>infty</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

dequeued: S
adjacent to S: A, B, C, D
Edgar Dijkstra's algorithm:
- set all vertices to have parent `None`.
- set distance for all vertices to `infinity`.
- set distance for source vertex to `0`.
- insert all vertices into a priority queue (by distance, smallest first).
- while priority queue is not empty:
 - dequeue a vertex `v` with the shortest distance.
 - for each vertex `w` adjacent to `v`:
 - if `w`'s distance > (v's distance + weight(v,w)):
 - set `w`'s parent to `v`.
 - set `w`'s distance to `v`'s dist. + weight(v,w).

Priority Queue: A, B, C, D

Dequeued: S

Adjacent to S: A, B, C, D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>None</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>infty</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

dequeued: \(S \)
adjacent to \(S \): A, B, C, D

<table>
<thead>
<tr>
<th>parent</th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

priority queue: A, B, C, D
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

dequeued: S
adjacent to S: A,B,C,D

<table>
<thead>
<tr>
<th>parent</th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v, w)):
 set w's parent to v
 set w's distance to v's dist. + weight(v, w)

dequeued:
adjacent to:
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
dequeue a vertex \(v \) with the shortest distance
for each vertex \(w \) adjacent to \(v \):
if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \))):
set \(w \)'s parent to \(v \)
set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

dequeued: A
adjacent to A:
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \)):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

dequeued: A
adjacent to A:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v, w)):
 set w's parent to v
 set w's distance to v's dist. + weight(v, w)

dequeued:
adjacent to:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
dequeue a vertex \(v \) with the shortest distance
for each vertex \(w \) adjacent to \(v \):
if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
set \(w \)'s parent to \(v \)
set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

Dequeued: B
adjacent to B: C, D

<table>
<thead>
<tr>
<th>parent</th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

priority queue: B, C, D
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
dequeue a vertex \(v \) with the shortest distance

for each vertex \(w \) adjacent to \(v \):
if \(w \)'s distance > (\(v \)'s distance + weight(\(v,w \))):
set \(w \)'s parent to \(v \)
set \(w \)'s distance to \(v \)'s dist. + weight(\(v,w \))

Dequeued: B
adjacent to B: C,D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

Dequeued: B
adjacent to B: C, D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w’s distance > (v’s distance + weight(v,w)):
 set w’s parent to v
 set w’s distance to v’s dist. + weight(v,w)
Dequeued: B
adjacent to B: C, D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to \textit{infinity}
set distance for source vertex to 0
insert all vertices into a \textit{priority queue} (by distance, smallest first).

\textbf{while priority queue is not empty:}
 dequeue a vertex \(v\) with the shortest distance
 for each vertex \(w\) adjacent to \(v\):
 if \(w\)'s distance > (\(v\)'s distance + weight(\(v,w\)):
 set \(w\)'s parent to \(v\)
 set \(w\)'s distance to \(v\)'s dist. + weight(\(v,w\))

\begin{itemize}
 \item Dequeued: B
 \item adjacent to B: C,D
\end{itemize}

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

Dequeued: B
adjacent to B: C, D
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)’s distance + weight(\(v, w \)):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)’s dist. + weight(\(v, w \))

Dequeued: B
adjacent to B: C, D

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \)):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

Dequeued: B
adjacent to B: C, D
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

Dequeued:
adjacent to:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
dequeue a vertex v with the shortest distance
for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v, w)):
 set w's parent to v
 set w's distance to v's dist. + weight(v, w)

Dequeued: C
adjacent to C:
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue
(by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest
distance

for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w)):
 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

Dequeued:
adjacent to:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
dequeue a vertex \(v \) with the shortest distance
for each vertex \(w \) adjacent to \(v \):
if \(w \)'s distance > (\(v \)'s distance + weight(\(v, w \)):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v, w \))

Dequeued: D
adjacent to D: A

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).
while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v, w):
 set w's parent to v
 set w's distance to v's dist. + weight(v, w)

Dequeued: D
adjacent to D: A
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:

- dequeue a vertex \(v \) with the shortest distance
- for each vertex \(w \) adjacent to \(v \):
 - if \(w \)'s distance > (\(v \)'s distance + weight(\(v,w \))):
 - set \(w \)'s parent to \(v \)
 - set \(w \)'s distance to \(v \)'s dist. + weight(\(v,w \))

Dequeued: D
adjacent to D: A

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex \(v \) with the shortest distance
 for each vertex \(w \) adjacent to \(v \):
 if \(w \)'s distance > (\(v \)'s distance + weight(\(v \),\(w \))):
 set \(w \)'s parent to \(v \)
 set \(w \)'s distance to \(v \)'s dist. + weight(\(v \),\(w \))

Dequeued: D
adjacent to D: A
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
- set all vertices to have parent None.
- set distance for all vertices to infinity
- set distance for source vertex to 0
- insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v, w)):
 set w's parent to v
 set w's distance to v's dist. + weight(v, w)

Dequeued:
adjacent to:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm for weighted graphs

Edgar Dijkstra's algorithm:
set all vertices to have parent None.
set distance for all vertices to infinity
set distance for source vertex to 0
insert all vertices into a priority queue (by distance, smallest first).

while priority queue is not empty:
 dequeue a vertex v with the shortest distance
 for each vertex w adjacent to v:
 if w's distance > (v's distance + weight(v,w)):
 set w's parent to v
 set w's distance to v's dist. + weight(v,w)

STOP
Dijkstra's algorithm for weighted graphs

The table is ready to be used.

For example, the shortest path from S to D is S → B → D

the shortest path from S to C is S → B → C

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>None</td>
<td>S</td>
<td>S</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>dist.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>