1. Consider the following graph:

Is it possible to color the vertices with two colors, so that no two adjacent vertices have the same color?
2. Determine whether the given pair of graphs is isomorphic:

3. Determine whether the given pair of graphs is isomorphic. If they are, give an isomorphism.

4. Two graphs, \mathbf{G} and \mathbf{H} are given by their matrix representations. Determine whether the graphs are isomorphic.

$$
M_{G}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \quad M_{H}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

5. For the given undirected graph, give its:

- adjacency list representation, and
- matrix representation
to think about:
How to represent multiple edges?

6. Determine whether the given undirected graphs are connected.

7. Determine whether the given undirected connected graph has a cut vertex (articulation point) and/or a cut edge (bridge).

8. Determine whether the given connected undirected graph has Euler circuit? Euler trail?

9. Determine whether the given connected undirected graph has Hamilton cycle? Hamilton path?

S
10. Determine whether the given connected directed graph has Hamilton cycle? Hamilton path?

11. Determine if the graph is planar. If it is not, does it have a planar representation?

12. Find the chromatic number of the given graph $G, \chi(G)$.

13. Find the shortest (in miles) route from Camden city to Newark city.

14. Find the shortest path from a to z in the given graph G., using Dijkstra's algorithm for weighted graphs.

G
15. How many edges are in K_{5} ? Is K_{5} a regular graph?
16. Is it possible to have a 3-regular graph with five vertices?

If such a graph is possible, draw an example. If such a graph is not possible, explain why not.
17. What is the longest possible walk in a graph with n vertices?
18. What is the longest possible cycle in a graph with n vertices?
19. Is K_{6} planar?

