1. Yes, it is possible to color the vertices with two colors, so that no two adjacent vertices have the same color.

2. Graphs are not isomorphic, because the first one has 2 vertices of degree 2 , and the second has 3 vertices on degree 2 .
Another reason: the second graph has a vertex of degree 4 and the first one does not.
3. The graphs are not isomorphic because graph G has a cycle of length 3 and graph S does not.
4. The graphs are isomorphic. If we move the rows of the matrix M_{G} around we will get matrix MH_{H}.
5.

adjacency list representation
$\left.\begin{array}{c} \\ \mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d} \\ \mathrm{d} \\ \mathrm{e} \\ \mathrm{f}\end{array} \quad \begin{array}{ccccccc}\mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} & \mathrm{f} \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 2 & 0 & 3 & 1 & 0 & 0 \\ 1 & 3 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$
6. The first graph is connected. The second one is unconnected - it has three connected components.
7. Yes, it does have cut vertices: u_{5} and u_{6} and cut edge: $\left\{u_{6}, u_{5}\right\}$
8. It has a Euler circuit because all vertices have even degree.

An Euler circuit: <a,d,a,d,c,e,c,b,e,d,b,a>
9. It has a Hamilton path and a Hamilton cycle.
a Hamilton path: <p,q,r,s,t>
a Hamilton cycle: <p,q,r,s,t,p>
10. It has a Hamilton path and a Hamilton cycle.

A Hamilton cycle: <a,e,b,c,f,d,a>
a Hamilton path: <a,e,b,c,f,d>
11. The given graph is planar. The given representation is not planar. A planar representation:

S
12. $\chi(G)=4$

Note that subgraph of G with vertices $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{7}, \mathrm{u}_{6}\right\}$ is a complete graph K_{4}, i.e. all vertices are connected to each other. Therefore, the minimum number of colors to use is 4.
13. the shortest (in miles) route from Camden city to Newark city:

Camden \rightarrow Woodbridge \rightarrow Newark
cost: 80
14. Find the shortest path from a to z in the given graph G., using Dijkstra's algorithm for weighted graphs.

G
15. K_{5} : 5 edges, each edge is connected to 4 other vertices: $5 * 4$, but this way we count each vertex twice, therefore we need to divide by 2 :
$5 \times 4 \div 2=10$ edges $\quad \mathrm{K}_{5}$ is a 4-regular graph
16. Such a graph is not possible.

3 -regular graph with 5 vertices should have $5 \times 3 \div 2$ edges.
15 is not divisible by 2 . Therefore such a graph is not possible.
or
use the handshaking theorem: $\quad 2 m=\sum_{v \in V} \operatorname{deg}(v)=2|E|$

$$
\sum_{v \in V} \operatorname{deg}(v)=5 * 3=15 \text { and it should be even }(=2 m) \text {, but it is not! }
$$

17. There is no longest possible walk in a graph with n vertices, because we can make it as long as we wish.
18. A cycle of length n.
19. the number of edges in K_{6} is $6 \times 5 \div 2=15$

By the theorem: [Theorem] Number of edges in a planar graph
Consider a connected planar simple graph $G=(V, E)$, where $|V|=n$, $|E|=m$ with $n \geq 3$, then $m \leq 3 n-6$

15 must be $\leq 3 \times 6-6=12$ contradiction
Therefore, K_{6} is not planar.

