CSI 35

ZyBooks

1. Yes, it is possible to color the vertices with two colors, so that no two adjacent vertices have the same color.

2. Graphs are not isomorphic, because the first one has 2 vertices of degree 2, and the second has 3 vertices on degree 2.

Another reason: the second graph has a vertex of degree 4 and the first one does not.

3. The graphs are not isomorphic because graph G has a cycle of length 3 and graph S does not.

4. The graphs are isomorphic. If we move the rows of the matrix M_G around we will get matrix M_H .

<u>5.</u>	_		-					
а		b	b	С				
b		а	a	С	С	С	d	
С		а	b	b	b	d	f	е
d		b	С	f				
е		С	f					
f		С	d	е				

adjacency list representation

matrix representation

6. The first graph is connected. The second one is unconnected – it has three connected components.

7. Yes, it does have cut vertices: u_5 and u_6 and cut edge: { u_6 , u_5 }

8. It has a Euler circuit because all vertices have even degree.

An Euler circuit: <a,d,a,d,c,e,c,b,e,d,b,a>

9. It has a Hamilton path and a Hamilton cycle.

a Hamilton path: <p,q,r,s,t> a Hamilton cycle: <p,q,r,s,t,p>

10. It has a Hamilton path and a Hamilton cycle.

A Hamilton cycle: <a,e,b,c,f,d,a> a Hamilton path: <a,e,b,c,f,d>

11. The given graph is planar. The given representation is not planar. A planar representation:

12. χ(G) = 4

Note that subgraph of G with vertices $\{u_1, u_2, u_7, u_6\}$ is a complete graph K_4 , i.e. all vertices are connected to each other. Therefore, the minimum number of colors to use is 4.

13. the shortest (in miles) route from Camden city to Newark city: Camden \rightarrow Woodbridge \rightarrow Newark cost: 80

14. Find the shortest path from a to z in the given graph G., using Dijkstra's algorithm for weighted graphs.

15. K_5 : 5 edges, each edge is connected to 4 other vertices: 5*4, but this way we count each vertex twice, therefore we need to divide by 2:

 $5 \times 4 \div 2 = 10$ edges K_5 is a 4-regular graph

16. Such a graph is not possible.

3-regular graph with 5 vertices should have $5 \times 3 \div 2$ edges. 15 is not divisible by 2. Therefore such a graph is not possible.

or

use the handshaking theorem: $2m = \sum_{v \in V} deg(v) = 2|E|$

 $\sum_{v \in V} deg(v) = 5*3=15$ and it should be even (= 2m), but it is not!

17. There is no longest possible walk in a graph with n vertices, because we can make it as long as we wish.

18. A cycle of length n.

19. the number of edges in K_6 is $6 \times 5 \div 2 = 15$

By the theorem: **[Theorem]** Number of edges in a planar graph Consider a connected planar simple graph G=(V,E), where |V| = n, |E| = m with $n \ge 3$, then $m \le 3n - 6$

15 must be $\leq 3 \times 6 - 6 = 12$ contradiction Therefore, K₆ is not planar.